
www.manaraa.com

SOFTWARE VERIFICATION RESEARCH CENTRE

DEPARTMENT OF COMPUTER SCIENCE

THE UNIVERSITY OF QUEENSLAND

Queensland 4072
Australia

TECHNICAL REPORT

Phone: +61 7 365 1003
Fax: +61 7 365 1533

 No. 93-15

 Colin Fidge

 Fundamentals of Distributed System Observation (version 1.1)

 November 1993

www.manaraa.com

Fundamentals of Distributed System ObservationColin FidgeSoftware Veri�cation Research CentreDepartment of Computer ScienceThe University of QueenslandQueensland 4072, AustraliaAbstractFundamental issues associated with observingactivity in a distributed system are identi�ed.The limitations of various timestamping mech-anisms used in testing and debugging such sys-tems are described.1 IntroductionTesting and debugging a distributed systempresents the programmer with profound chal-lenges: merely observing what is happeningin a network of processes is di�cult. Hereinwe characterise the issues and then use thisclassi�cation to critically analyse the power oftimestamp-based solutions, thus giving an in-sight into the expressibility of di�erent timemodels.2 De�nitionsThe e�ects discussed herein usually manifestthemselves in distributed systems, i.e., thosein which there are a number of communicat-ing, spatially-separated processors. However,the concepts discussed below are applicable toany system exhibiting concurrency, i.e., theappearance of two or more events occurringsimultaneously, including multiprocessor ma-chines and single processor interleaved task-ing.We make no assumptions about the natureof events occurring in the system other thanto note that they represent discrete actionsmeaningful to the programmer. This may be

the execution of single machine instructions,or entire procedures; the level of granularity isirrelevant.For brevity in this presentation we assumethat asynchronous message-passing is the onlymedium for interprocess communication inthe system under test|senders do not blockand messages are bu�ered until a receiver re-quests one (but fifo queuing is not necessar-ily assumed). However, the concepts extendstraightforwardly to other forms of commu-nication, e.g., synchronous message-passing,shared memory, remote procedure calls or ren-dezvous.Our motivating concern is the observabilityproblem in distributed systems, i.e., the di�-culty of attempting to determine the order inwhich events occurred during a given compu-tation (i.e., a single \execution" or \run" ofthe system, de�nable via the particular set ofcontrol paths followed on this occasion). Weadopt causality , i.e., the ability of one event toa�ect another, as the basis for de�ning eventorder because it allows us to reason indepen-dently of any particular time-frame.An observer of a distributed system is anyentity that attempts to examine a computa-tion. Observers may be human programmers,watching an animated display of system ac-tivity, or other processes in the network, auto-matically analysing system activity. Observersmay watch the system \live", while the com-putation is in progress, or examine a post-mortem event log or trace. In any case itis necessary to inform the observer wheneverinteresting events occur. In practice this in-volves instrumenting the system under obser-1

www.manaraa.com

P Qa cb dFigure 1: A distributed computation.
P Qba cdFigure 2: A di�erent view of the same compu-tation.vation with probes that send noti�cation mes-sages to the observer (or, equivalently, writeentries into the log) following the occurrenceof such events.Our concern in this paper is to determinehow accurate a view of system activity is pre-sented to the observer by these noti�cations.We assess a number of proposed methods ofevent timestamping, i.e., ways of associatingtiming information with each event that canbe included in the noti�cation messages andused by the observer to assess event orderings.As a simple running example, we use thecomputation shown in Figure 1. It showsa system consisting of two parallel processesP and Q . Process P performs two events.Firstly, event a denotes the transmission of amessage and P then performs an action localto itself, denoted b. Process Q also performstwo events, denoted c and d , the �rst of whichis the reception of the message sent by P .

It is important to note that, in the ab-sence of any further information, this samecomputation can be redrawn as shown in Fig-ure 2. Here the same events occur in the samerelative local orders, but our \omnipotent"viewpoint allows us to interleave independentevents such as b and c di�erently. Lamport [1]discusses this equivalence in depth.3 Fundamentalobservability e�ectsThe e�ects an observer may encounter whenrelying on the arrival of noti�cation messagesto determine event orderings in a distributedsystem can be summarised in the followingfour ways.3.1 Multiple observers see di�er-ent orderingsWhenever there are two or more observers ofa particular computation they may each per-ceive di�erent event orderings. In Figure 3two observers O and R are noti�ed of the oc-currence of events b and c (noti�cation mes-sages are shown as dotted arrows). Due to thepropagation delays associated with the mes-sages, observer O believes that event b oc-curred before event c, whereas observer R seesevent c occur before event b. Both interpre-tations are valid, but they cannot be easilyreconciled. (We can draw an obvious parallelwith spacetime physics|the observer's loca-tion determines its view of the universe [2].)3.2 Incorrect perceived order-ingsMore seriously, the perceived event orderingmay simply be incorrect. In Figure 4 observerR erroneously believes that event c occurredbefore event a. Such an e�ect may be causedby noti�cations being delayed due to retries orbeing routed to the observer through indirectpathways. (This does not happen in theoret-ical physics because we rely on the constant2

www.manaraa.com

O P Q Rab cdFigure 3: Multiple observers see di�erent or-derings.
P Q Rab cdFigure 4: Incorrect perceived ordering.upper bound placed on information propaga-tion due to the speed of light.)3.3 Same computation exhibitsdi�erent orderingsWhen testing or debugging a system we fre-quently want to replay the same computationseveral times in order to study di�erent as-pects of its behaviour. Unfortunately an ob-server may see di�erent event orderings at eachreplay! Figure 5 shows two di�erent instancesof the same computation: in both cases pro-cesses P and Q perform exactly the sameevents in the same relative orders (a then band c then d). In the �rst instance observerO sees event c occur before event b, but inthe second instance (involving the same pro-gram, supplied with the same data, and fol-lowing the same control paths) the observersees b occur before event c. This nondeter-

ministic behaviour during debugging may bedue to minor di�erences in the processor andlink loads caused by other system activity andmay occur even when the system being ob-served is performing a deterministic computa-tion! This can be a major source of frustrationwhen debugging distributed systems becausepreviously observed ordering errors may van-ish, even though a replay mechanism is beingused.3.4 Arbitrary orderings adoptedRelying on the arrival time of noti�cations todetermine event orderings also means that ar-bitrary orderings are assumed between unre-lated events. In Figure 6 observer O �rst seesthat event a occurred before event c. This isa valid observation in the sense that a mustoccur before c in this computation. ObserverO then sees event c occur before event b. Thisperceived ordering is merely an artifact of thenoti�cation mechanism. As shown by com-paring Figures 1 and 2, events b and c areindependent in this computation and may oc-cur in either order (in a global sense of time).This is a serious problem because such arbi-trary orderings are indistinguishable from gen-uine \enforced" orderings and thus inhibit theobserver's ability to know if the same eventorderings will be maintained in future tests.During debugging, a programmer observingc preceding b may mistakenly conclude thatthis program has su�cient interaction betweenprocesses P and Q to always maintain this or-dering.4 E�ectiveness of time-stampingTo accurately observe behaviour in a dis-tributed system more information is neededthan just the arrival order of noti�cations. Anobvious approach is to timestamp the eventsof interest and send this information to theobserver in the noti�cation messages. The ob-server can then use these values to determinethe true order in which events occurred.3

www.manaraa.com

O P Q O P Qaa cdb db cFigure 5: Same computation exhibits di�erent orderings.Ordering mechanismsReal-time Logicaltimestamps timestampsarrival local global totally partiallyE�ects ordering clocks clock ordered orderedMultiple observers seedi�erent orderings X X X XIncorrect perceivedorderings X X XSame computation exhibitsdi�erent orderings X XArbitrary orderingsadopted XTable 1: E�ectiveness of timestamping mechanisms.\c ! b?"\a ! c" ab cO P Q dFigure 6: Arbitrary orderings adopted.The remainder of this section critically anal-yses the ability of four di�erent timestampingmechanisms to resolve the observability e�ectsdescribed in Section 3 above. Table 1 sum-
marises the results; a `X' indicates that theproposed timestamping mechanism satisfacto-rily overcomes the e�ect process distributionhas on observability.4.1 Local real-time clocksAn obvious approach is to make use of what-ever real-time clock is available in the hard-ware of each processor as the source of time-stamps. Since all noti�cation messages willthen have the same time value associated witheach event this means that all observers willsee the same time orderings, thus avoiding the�rst e�ect. Unfortunately the others persist.Figure 7 shows two possible ways in whichthe events in our example computation maybe timestamped. Since the clocks on di�er-ent processors are not synchronised they will4

www.manaraa.com

P Q P Qa(0:03)b(0:07) a(0:03)b(0:05)d(0:06) d(0:06)c(0:05)c(0:02)Figure 7: Real-time timestamps using unsynchronised local clocks.inevitably drift, so it is not meaningful to com-pare times across machine boundaries. Incor-rect orderings may therefore be seen; on theleft of Figure 7 the clock on P 's processor isahead of that of Q so event c erroneously ap-pears to occur before event a. Also, each in-stance of the same computation may receivedi�erent timestamps, as shown by the two sce-narios in Figure 7. Finally, the ordering be-tween independent events, such as b and d inFigure 7, is randomly inuenced by processorloads and the (in)ability of the clocks to re-main synchronised.4.2 A global real-time clockAs an improvement assume that the clocks aresynchronised throughout the distributed sys-tem to a high degree of accuracy, in e�ect giv-ing us a global reference for real time. Thisavoids the e�ect of incorrect orderings beingperceived; time readings become meaningfulacross processor boundaries and hence alwaysreect the actual order of event occurrence.Nevertheless, as shown by Figure 8, the samecomputation may still yield di�erent order-ings, and arbitrary orderings are still imposedon independent events.It is surprising that such a powerful facil-ity as global real time, which is not realisableto su�cient accuracy in practice, still fails tosatisfy our needs. To answer the question ofwhether one event must precede another in aparticular computation with certainty an un-bounded number of tests would be required!

4.3 Totally ordered logical clocksThe issues remaining above are due to the useof absolute time to order events. These val-ues are randomly inuenced by factors suchas processor loads and the absolute time atwhich each process is started. As a solutionto this, logical clocks have been proposed as amore objective ordering mechanism. A simplesystem of logical clocks can be used to totallyorder the events in a distributed system [1] us-ing the following rules:� each process maintains an integer counter,� whenever a process performs an event ofinterest it increments its counter,� whenever a process sends a message thecurrent counter value is \piggybacked" onthe message, and� whenever a process receives a message itsets its own counter to be greater than itscurrent value and that of the piggybackedvalue received.Figure 9 shows the totally ordered time-stamps associated with each event in our ex-ample computation, assuming that the coun-ters start from zero and are incremented byexactly one at each event occurrence. The val-ues for events a and b are obvious. The receiveevent c, however, is given timestamp 2, ratherthan 1, because it must have a higher valuethan the corresponding send event.The timestamps thus generated are notunique, as shown by events b and c. The to-5

www.manaraa.com

P Q P Qb(0:06)a(0:02) c(0:04) b(0:04)a(0:02) c(0:06)d(0:07)d(0:07)Figure 8: Real-time timestamps using a global clock.
P Q c(2)a(1)b(2) d(3)Figure 9: Totally ordered logical clock time-stamps.tal ordering is completed by adopting an arbi-trary, but consistent, ordering among the pro-cesses when two events have the same time-stamp.This mechanism has the same advantages ofglobal real-time clocks and also precludes thepossibility of the same computation producingdi�erent orderings. The timestamps are con-sistently associated with each event no matterhow many times the computation is replayed,regardless of di�erences in the absolute tim-ing. This is an important advantage duringtesting and debugging because it avoids theneed to re-perform the same computation inorder to see if di�erent orderings are observ-able. (A nondeterministic program may stillgenerate several distinct computations fromthe same input data, however.) For this rea-son, and the ease of implementing them, to-tally ordered logical clocks have been used in

many distributed debugging systems.One issue remains however. An arbitrary or-dering is still imposed on independent events.An observer relying on the timestamps in Fig-ure 9 will mistakenly conclude that b alwaysoccurs before d , even though there is no inter-action between processes P and Q to guaran-tee this. This misleading view will thwart anyattempts to debug problems stemming frominadequate synchronisation between events.4.4 Partially ordered logicalclocksThe ordering of events de�ned by totally or-dered clocks is an incomplete view of eventcausality. However a straightforward exten-sion allows all causal orderings to be preserved.Partially ordered logical clocks [3, 4] can bemaintained as follows:� each process maintains an array of coun-ters, with one element in the array for ev-ery process in the distributed system,� whenever a process performs an eventof interest it increments its own countervalue in its array,� whenever a process sends a message thearray of counters is piggybacked on themessage, and� whenever a process receives a message itsets each element in its own array to bethe maximum of the current value of theelement and the corresponding element inthe piggybacked array received.6

www.manaraa.com

P Qa([1,0])b([2,0]) c([1,1])d([1,2])Figure 10: Partially ordered logical clock time-stamps.Figure 10 shows how our example would betimestamped. Processes P and Q both main-tain an array of two counters. In each arraythe �rst counter value represents the numberof events known to have occurred in processP and the second value represents the numberof events known to have occurred in processQ . (This example assumes a �xed number ofprocesses, but the concept extends to dynamicprocess creation [3].)The entire array forms the timestamp.When comparing two such timestamps we canconclude that some event e preceded someevent f if and only if� event f has a counter value for the processin which e occurred greater than or equalto the number of events in that processup to e inclusive, and� event e has a counter value for the pro-cess in which f occurred strictly less thanthe number of events in that process upto f inclusive (this condition avoids re-exivity [1] and allows for synchronousmessage-passing [3]).For instance, in Figure 10 we can concludethat event a preceded event d because d knowsof the occurrence of 1 event in process P , asdoes a, but a does not know of as many eventsin process Q as d . Similarly we know that cpreceded d because d knows of more events inprocess Q (2) than c does (1).These conclusions can also be reached us-ing totally ordered clocks. However, where

the totally ordered model assumed that b pre-ceded d , the partially ordered model does not.We cannot show that b precedes d because bknows of more events (2) in process P than ddoes (1). Furthermore, we cannot show thatd precedes b either because d knows of moreevents occurring in process Q (2) than doesb (0). An observer can therefore make use ofthese timestamps to determine that events band d are unordered ; they are independent ac-tions that (in global time) may occur in eitherorder, or even simultaneously.This capability overcomes the last of ouroutstanding observability e�ects (see Table 1).Partially ordered clocks reect only \enforced"causal orderings and make the absence of or-dering explicit.5 Discussion5.1 Synchronous noti�cationsMany of the observability e�ects de�ned inSection 3 stemmed from unpredictable delaysbetween the time events occurred in the dis-tributed system and the time the observer re-ceived a noti�cation. It is therefore temptingto assume that using synchronous communi-cation between the system and its observer(s)will avoid these e�ects. Unfortunately, asshown in Figure 11, the problems persist. (In-formation is still being sent from processes Pand Q to O , but the double-headed arrows de-note the bidirectional causality relation thatresults from synchronous communication; asynchronous message-pass can be modelled asan asynchronous message sent to the observerimmediately followed by an acknowledgementmessage sent back to the noti�er.)It is still possible for the arrival time of noti-�cations to incorrectly reect event orderings.In Figure 11 process P is delayed, perhapsdue to contention for the cpu, and the no-ti�cation for event c arrives before that of itscausal predecessor a. Arbitrary orderings arestill imposed, as is the case between b and d .Similarly, multiple observers may see di�erentorderings and the same computationmay yielddi�erent observations.Making the noti�cations an integral part of7

www.manaraa.com

O P Qab cdFigure 11: Inaccurate reporting using syn-chronous noti�cations.the events themselves, i.e., making the eventand the noti�cation atomic, improves the situ-ation but this is di�cult to achieve in practice.In a geographically-separated network, syn-chronous message-passing is inevitably imple-mented via an underlying asynchronous mes-sage protocol.5.2 Intrusive observersIt was noted above that synchronous noti�ca-tion messages cannot solve our observabilityproblems. Even worse, synchronous noti�ca-tion introduces a form of probe e�ect (see Ap-pendix A) in which the mere act of observingthe system alters its behaviour! (Again onecan draw a parallel with quantum physics.)This manifests itself in two ways. Firstly,processes which wish to notify the observer aree�ectively blocked until the observer deigns tocommunicate with them. This may alter real-time behaviour and nondeterministic choicesin the system under observation. Also, anybias on the observer's part about which systemprocesses it \prefers" to communicate withwill inuence their ability to proceed.Secondly, the bi-directional causality rela-tionship de�ned by synchronous communica-tion creates new causal orderings that wouldnot exist in the absence of the observer. InFigure 12 each event is followed by a noti�-cation message. After receiving noti�cation ofevent b in process P , the observer interactswith process Q , to receive noti�cation of eventc. This creates a direct causal link between P

O P Qab cdFigure 12: Intrusiveness due to synchronousnoti�cations.and Q , via the observer O , that means thatevent b causally a�ects event d ! This is easilydemonstrable by following arrows from b to din Figure 12.(A similar problem happens whenever anobserver participates in the logical time-stamping algorithms described in Sections 4.3and 4.4. It is important that an observer mustnot propagate the timestamps it receives if it isto remain unintrusive. Lamport also discussesthe opposite problem, in which the failure ofsome links in a distributed system to propa-gate timestamps leads to \anomalous" obser-vations [1].)6 ConclusionWe have compared a number of mechanismsintended to give the programmer a view ofthe order in which events occur in a dis-tributed system. It was shown that par-tially ordered clocks are the only one capa-ble of fully indicating ordering between events;all other timestamping mechanisms may mis-leadingly impose orderings between indepen-dent events. This is not to say that partiallyordered clocks are the only mechanism thatshould be used; they are expensive to imple-ment and totally ordered logical clocks havedemonstrated their adequacy in many practi-cal applications. However programmers usingother timestampingmechanisms should appre-ciate their limitations and understand thatthey are receiving an incomplete view of event8

www.manaraa.com

ordering. Partially ordered clocks can thenbe used to give the complete picture whenneeded.This work began with the author's own at-tempt to debug a parallel program. The pro-gram drew a complex diagram on a graphicsterminal. This was done using several pro-cesses, each in charge of their own portion ofthe screen, presided over by a central \con-troller" process which initialised and closedthe display surface. The program was foundto occasionally crash towards the end of therun, seemingly at random. Poor synchroni-sation between the controller and its subor-dinates in the �nal stages of the executionwas suspected but none of the debugging toolsavailable at the time (1985) was capable of giv-ing us a view of system behaviour adequate tocon�rm this suspicion; ultimately it transpiredthat the problem was caused by the controllerprocess performing its closing actions after re-ceiving a \�nished" message from just one ofits subordinates, instead of waiting for themall. The frustrations encountered in this exer-cise led to the development of partially orderedlogical clocks [3] as a model that can detect theabsence of ordering.Acknowledgements I wish to thank MarkUtting and the anonymous referees for their in-sightful comments and corrections, and RobinStanton and Amr El-Kadi for inuential dis-cussions on the nature of the probe e�ect.References[1] L. Lamport. Time, clocks, and the or-dering of events in a distributed system.Communications of the ACM, 21(7):558{565, July 1978.[2] E.F. Taylor and J.A. Wheeler. SpacetimePhysics: An Introduction to Special Rel-ativity. Freeman, 1992. Second edition.[3] C.J. Fidge. Logical time in distributedcomputing systems. IEEE Computer,24(8):28{33, August 1991.[4] F. Mattern. Virtual time and globalstates of distributed systems. In Parallel

and Distributed Algorithms, pages 215{226. North-Holland, 1989.[5] J. Gait. A probe e�ect in concurrent pro-grams. Software|Practice & Experience,16(3):225{233, 1986.[6] P.S. Dodd and C.V. Ravishankar. Mon-itoring and debugging distributed real-time programs. Software|Practice & Ex-perience, 22(10):863{877, October 1992.[7] F. Baiardi, N. de Francesco, andG. Vaglini. Development of a debug-ger for a concurrent language. IEEETransactions on Software Engineering,SE-12(4):547{553, 1986.[8] L.D. Wittie. Debugging distributed Cprograms by real time replay. ACM SIG-PLAN Notices, 24(1), January 1989.[9] H. Tokuda, M. Kotera, and C. Mercer. Areal-time monitor for a distributed real-time operating system. ACM SIGPLANNotices, 24(1), January 1989.[10] C.E. McDowell and D.P. Helmbold. De-bugging concurrent programs. ACMComputing Surveys, 21(4):593{622, De-cember 1989.[11] R. Rubin, L. Rudoplh, and D. Zernik.Debugging parallel programs in parallel.ACM SIGPLAN Notices, 24(1), January1989.[12] D. Haban. DTM: A method for test-ing distributed systems. In Proc. SixthSymposium on Reliability in DistributedSoftware and Database Systems, Virginia,March 1987.[13] A. Gordon. Ordering Errors in Dis-tributed Programs. PhD thesis, Universityof Wisconsin-Madison, 1985.[14] J. Joyce, G. Lomow, K. Slind, andB. Unger. Monitoring distributed sys-tems. ACM Transactions on ComputerSystems, 5(2):121{150, 1987.9

www.manaraa.com

A The probe e�ect and re-producibilityAn issue often associated with, but distinctfrom, the observability problem is the probe ef-fect (sometimes referred to as the `Heisenberge�ect' by aspiring physicists). This is the dan-ger that auxiliary code added by a debuggerwill alter the behaviour of a concurrent pro-gram under study [5, 6]. Whereas the observ-ability problem concerned our ability to studya particular computation, the probe e�ect con-cerns the ability to perform a given computa-tion in the �rst place. The probe e�ect maymake existing errors vanish, by preventing cer-tain erroneous computations from occurring,or can cause new errors to appear, by allowingcomputations not possible in the original pro-gram. Many systems take extreme measures inan attempt to avoid the probe e�ect, typicallyby trying to account for the time occupied bythe auxiliary code [7, 8]. Unfortunately it haslong been recognised that software-based de-bugging utilities inevitably introduce some de-gree of intrusiveness [9]. (Customised hard-ware can be used to unintrusively monitor asystem [10, 11] but this is expensive and in-exible.)The probe e�ect manifests itself by� changing the probability of making par-ticular nondeterministic choices,� altering real-time execution speeds,� changing access patterns to inadequatelyprotected shared memory, or� making a program augmented with de-bugging probes distinguishable from theunaugmented program.We can therefore correspondingly recognisethat the probe e�ect may be lessened undercertain conditions. In contemporary program-ming languages (e.g., Ada and occam) it isgenerally safe to assume that the language se-mantics makes no commitment regarding fair-ness of choices so no amount of bias introducedby debugging code can be said to have alteredthe program semantics.

Given this assumption, there are two partic-ular scenarios of interest. Firstly, it has beenwidely recognised that if the program undergo-ing debugging is the same as the �nal `produc-tion' version then the probe e�ect is not a con-cern. This implies the commonly-suggestedsolution of permanently installing debuggingprobes so that there is only ever one versionof the program in existence [10, 6, 12, 13], al-beit with a penalty in terms of run-time over-heads. (However, this approach has the ben-e�t of leaving debugging `hooks' in an oper-ational system for tracking down infrequenterrors that eluded the testing and debuggingphases.)Secondly, if the program has no real-timedeadlines and does not attempt unprotectedaccess to shared memory, then we can be cer-tain that no new logical errors will be inducedin the augmented program|only valid controlpaths can be followed. However there is stillthe possibility that existing errors are hidden,due to the probability of an erroneous compu-tation occurring being reduced to near zero.It is also important to clearly distinguishthe probe e�ect from the di�culty of achiev-ing reproducibility while debugging concurrentsoftware. This is the problem that, havingseen the system perform some behaviour of in-terest, the programmer cannot force this par-ticular computation to occur again. Howeverthe reproducibility problem exists for any pro-gram that makes nondeterministic choices, re-gardless of the presence or absence of debug-ging probes, and can be treated using methodsquite distinct from those proposed to overcomethe probe e�ect [10]. These include recordingtraces for later replay [6] or giving the pro-grammer explicit control over nondeterminis-tic alternatives [14]. (Interestingly, the e�ectdescribed in Section 3.3 can be overcome byincluding the observer itself in a trace-basedreproducibility mechanism.) Practical debug-ging problems attributed to the probe e�ectare, quite often, actually manifestations of thedi�culty of achieving reproducibility.10

