SOFTWARE VERIFICATION RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE
THE UNIVERSITY OF QUEENSLAND

Queendand 4072
Australia

TECHNICAL REPORT

No. 93-15
Fundamentals of Distributed System Observation (version 1.1)

Colin Fidge

November 1993

Phone: +61 7 365 1003
Fax: +61 7 365 1533

www.manharaa.com

Fundamentals of Distributed System Observation

Colin Fidge
Software Verification Research Centre
Department of Computer Science

The University of Queensland
Queensland 4072, Australia

Abstract

Fundamental issues associated with observing
activity in a distributed system are identified.
The limitations of various timestamping mech-
anisms used in testing and debugging such sys-
tems are described.

1 Introduction

Testing and debugging a distributed system
presents the programmer with profound chal-
lenges: merely observing what is happening
in a network of processes 1s difficult. Herein
we characterise the issues and then use this
classification to critically analyse the power of
timestamp-based solutions, thus giving an in-
sight into the expressibility of different time
models.

2 Definitions

The effects discussed herein usually manifest
themselves in distributed systems, i.e., those
in which there are a number of communicat-
ing, spatially-separated processors. However,
the concepts discussed below are applicable to
any system exhibiting concurrency, i.e., the
appearance of two or more events occurring
simultaneously, including multiprocessor ma-
chines and single processor interleaved task-
ing.

We make no assumptions about the nature
of events occurring in the system other than
to note that they represent discrete actions
meaningful to the programmer. This may be

the execution of single machine instructions,
or entire procedures; the level of granularity is
irrelevant.

For brevity in this presentation we assume
that asynchronous message-passing is the only
medium for interprocess communication in
the system under test—senders do not block
and messages are buffered until a receiver re-
quests one (but FIFO queuing is not necessar-
ily assumed). However, the concepts extend
straightforwardly to other forms of commu-
nication, e.g., synchronous message-passing,
shared memory, remote procedure calls or ren-
dezvous.

Our motivating concern is the observability
problem in distributed systems, i.e., the diffi-
culty of attempting to determine the order in
which events occurred during a given compu-
tation (i.e., a single “execution” or “run” of
the system, definable via the particular set of
control paths followed on this occasion). We
adopt causality, i.e., the ability of one event to
affect another, as the basis for defining event
order because 1t allows us to reason indepen-
dently of any particular time-frame.

An observer of a distributed system is any
entity that attempts to examine a computa-
tion. Observers may be human programmers,
watching an animated display of system ac-
tivity, or other processes in the network, auto-
matically analysing system activity. Observers
may watch the system “live”, while the com-
putation is in progress, or examine a post-
mortem event log or trace. In any case it
1s necessary to inform the observer whenever
interesting events occur. In practice this in-
volves instrumenting the system under obser-

www.manaraa.com

be

P Q

Figure 1: A distributed computation.

be

P Q

Figure 2: A different view of the same compu-
tation.

vation with probes that send notification mes-
sages to the observer (or, equivalently, write
entries into the log) following the occurrence
of such events.

Our concern in this paper is to determine
how accurate a view of system activity is pre-
sented to the observer by these notifications.
We assess a number of proposed methods of
event timestamping, i.e., ways of associating
timing information with each event that can
be included in the notification messages and
used by the observer to assess event orderings.

As a simple running example, we use the
computation shown in Figure 1. It shows
a system consisting of two parallel processes
P and). Process P performs two events.
Firstly, event a denotes the transmission of a
message and P then performs an action local
to itself, denoted b. Process @) also performs
two events, denoted ¢ and d, the first of which
is the reception of the message sent by P.

It is important to note that, in the ab-
sence of any further information, this same
computation can be redrawn as shown in Fig-
ure 2. Here the same events occur in the same
relative local orders, but our “omnipotent”
viewpoint allows us to interleave independent
events such as b and ¢ differently. Lamport [1]
discusses this equivalence in depth.

3 Fundamental
observability effects

The effects an observer may encounter when
relying on the arrival of notification messages
to determine event orderings in a distributed
system can be summarised in the following
four ways.

3.1 Multiple observers see differ-

ent orderings

Whenever there are two or more observers of
a particular computation they may each per-
ceive different event orderings. In Figure 3
two observers O and R are notified of the oc-
currence of events b and ¢ (notification mes-
sages are shown as dotted arrows). Due to the
propagation delays associated with the mes-
sages, observer O believes that event b oc-
curred before event ¢, whereas observer R sees
event c¢ occur before event b. Both interpre-
tations are valid, but they cannot be easily
reconciled. (We can draw an obvious parallel
with spacetime physics—the observer’s loca-
tion determines its view of the universe [2].)

3.2 Incorrect perceived order-
ings

More seriously, the perceived event ordering
may simply be incorrect. In Figure 4 observer
R erroneously believes that event ¢ occurred
before event a. Such an effect may be caused
by notifications being delayed due to retries or
being routed to the observer through indirect
pathways. (This does not happen in theoret-
ical physics because we rely on the constant

www.manaraa.com

A A
| _ 7
< - -7 :
! R
A 1
0] P Q R

Figure 3: Multiple observers see different or-
derings.

be T

Figure 4: Incorrect perceived ordering.

upper bound placed on information propaga-
tion due to the speed of light.)

3.3 Same computation exhibits
different orderings

When testing or debugging a system we fre-
quently want to replay the same computation
several times in order to study different as-
pects of its behaviour. Unfortunately an ob-
server may see different event orderings at each
replay! Figure 5 shows two different instances
of the same computation: in both cases pro-
cesses P and () perform exactly the same
events in the same relative orders (a then b
and ¢ then d). In the first instance observer
O sees event ¢ occur before event &, but in
the second instance (involving the same pro-
gram, supplied with the same data, and fol-
lowing the same control paths) the observer

sees b occur before event ¢. This nondeter-

ministic behaviour during debugging may be
due to minor differences in the processor and
link loads caused by other system activity and
may occur even when the system being ob-
served is performing a deterministic computa-
tion! This can be a major source of frustration
when debugging distributed systems because
previously observed ordering errors may van-
ish, even though a replay mechanism is being
used.

3.4 Arbitrary orderings adopted

Relying on the arrival time of notifications to
determine event orderings also means that ar-
bitrary orderings are assumed between unre-
lated events. In Figure 6 observer O first sees
that event a occurred before event ¢. This is
a valid observation in the sense that « must
occur before ¢ in this computation. Observer
O then sees event ¢ occur before event b. This
perceived ordering is merely an artifact of the
notification mechanism. As shown by com-
paring Figures 1 and 2, events b and ¢ are
independent in this computation and may oc-
cur in either order (in a global sense of time).
This is a serious problem because such arbi-
trary orderings are indistinguishable from gen-
uine “enforced” orderings and thus inhibit the
observer’s ability to know if the same event
orderings will be maintained in future tests.
During debugging, a programmer observing
¢ preceding b may mistakenly conclude that
this program has sufficient interaction between
processes P and @ to always maintain this or-
dering.

4 Effectiveness of time-

stamping

To accurately observe behaviour in a dis-
tributed system more information is needed
than just the arrival order of notifications. An
obvious approach is to timestamp the events
of interest and send this information to the
observer in the notification messages. The ob-
server can then use these values to determine
the true order in which events occurred.

www.manaraa.com

A A
| |
| |
\ ®d \ d
e-- o] N---o L
~<-___be ~-___ [T
I - I
| ®c |
| |
| a | a
| |
0 P Q 0 P Q
Figure 5: Same computation exhibits different orderings.
Ordering mechanisms
Real-time Logical
timestamps timestamps
arrival local global totally partially
Effects ordering clocks clock ordered ordered
Multlple obseryers see v v v v
different orderings
Incor?ect perceived v v v
orderings
Same computation exhibits
. . v v
different orderings
Arbitrary orderings v
adopted
Table 1: Effectiveness of timestamping mechanisms.
marises the results; a ‘v’ indicates that the
A) . . .
| proposed timestamping mechanism satisfacto-
“e— b7 o rily overcomes the effect process distribution
ST~ ol .
| =~ has on observability.
« 9 | b®
a—
! TTre--- - = .
| ®c 4.1 Local real-time clocks
~- 2
! T~ An obvious approach is to make use of what-
: ever real-time clock 1s available in the hard-
! ware of each processor as the source of time-
0 P Q

Figure 6: Arbitrary orderings adopted.

The remainder of this section critically anal-
yses the ability of four different timestamping
mechanisms to resolve the observability effects
described in Section 3 above. Table 1 sum-

stamps. Since all notification messages will
then have the same time value associated with
each event this means that all observers will
see the same time orderings, thus avoiding the
first effect. Unfortunately the others persist.
Figure 7 shows two possible ways in which
the events in our example computation may
be timestamped. Since the clocks on differ-
ent processors are not synchronised they will

www.manaraa.com

® d(0:06) d(0:06
b(0:07) @ I ¢(0:05
® ¢(0:02) b(0:05) @
a(0:03) a(0:03)
P Q p Q

Figure 7: Real-time timestamps using unsynchronised local clocks.

inevitably drift, so it is not meaningful to com-
pare times across machine boundaries. Incor-
rect orderings may therefore be seen; on the
left of Figure 7 the clock on P’s processor is
ahead of that of () so event ¢ erroneously ap-
pears to occur before event a. Also, each in-
stance of the same computation may receive
different timestamps, as shown by the two sce-
narios in Figure 7. Finally, the ordering be-
tween independent events, such as b and d in
Figure 7, is randomly influenced by processor
loads and the (in)ability of the clocks to re-
main synchronised.

4.2 A global real-time clock

As an improvement assume that the clocks are
synchronised throughout the distributed sys-
tem to a high degree of accuracy, in effect giv-
ing us a global reference for real time. This
avoids the effect of incorrect orderings being
perceived; time readings become meaningful
across processor boundaries and hence always
reflect the actual order of event occurrence.
Nevertheless, as shown by Figure 8, the same
computation may still yield different order-
ings, and arbitrary orderings are still imposed
on independent events.

It is surprising that such a powerful facil-
ity as global real time, which is not realisable
to sufficient accuracy in practice, still fails to
satisfy our needs. To answer the question of
whether one event must precede another in a
particular computation with certainty an wun-
bounded number of tests would be required!

4.3 Totally ordered logical clocks

The issues remaining above are due to the use
of absolute time to order events. These val-
ues are randomly influenced by factors such
as processor loads and the absolute time at
which each process is started. As a solution
to this, logical clocks have been proposed as a
more objective ordering mechanism. A simple
system of logical clocks can be used to totally
order the events in a distributed system [1] us-
ing the following rules:

e each process maintains an integer counter,

e whenever a process performs an event of
interest it increments its counter,

e whenever a process sends a message the
current counter value is “piggybacked” on
the message, and

e whenever a process receives a message it
sets 1ts own counter to be greater than its
current value and that of the piggybacked
value received.

Figure 9 shows the totally ordered time-
stamps associated with each event in our ex-
ample computation, assuming that the coun-
ters start from zero and are incremented by
exactly one at each event occurrence. The val-
ues for events ¢ and b are obvious. The receive
event ¢, however, is given timestamp 2, rather
than 1, because it must have a higher value
than the corresponding send event.

The timestamps thus generated are not
unique, as shown by events b and ¢. The to-

www.manaraa.com

¢ d(0:07) d(0:07
b(0:06) @ I ¢(0:06
® ¢(0:04) b(0:04) @
a(0:02) a(0:02)
P Q P Q

Figure 8: Real-time timestamps using a global clock.

®d(3)
h(2)®
® c(2)
a(1)
P Q

Figure 9: Totally ordered logical clock time-
stamps.

tal ordering is completed by adopting an arbi-
trary, but consistent, ordering among the pro-
cesses when two events have the same time-
stamp.

This mechanism has the same advantages of
global real-time clocks and also precludes the
possibility of the same computation producing
different orderings. The timestamps are con-
sistently associated with each event no matter
how many times the computation 1s replayed,
regardless of differences in the absolute tim-
ing. This is an important advantage during
testing and debugging because it avoids the
need to re-perform the same computation in
order to see if different orderings are observ-
able. (A nondeterministic program may still
generate several distinct computations from
the same input data, however.) For this rea-
son, and the ease of implementing them, to-
tally ordered logical clocks have been used in

many distributed debugging systems.

One issue remains however. An arbitrary or-
dering is still imposed on independent events.
An observer relying on the timestamps in Fig-
ure 9 will mistakenly conclude that & always
occurs before d, even though there is no inter-
action between processes P and) to guaran-
tee this. This misleading view will thwart any
attempts to debug problems stemming from
inadequate synchronisation between events.

4.4 Partially ordered

clocks

logical

The ordering of events defined by totally or-
dered clocks is an incomplete view of event
causality. However a straightforward exten-
sion allows all causal orderings to be preserved.
Partially ordered logical clocks [3, 4] can be
maintained as follows:

e cach process maintains an array of coun-
ters, with one element in the array for ev-
ery process in the distributed system,

e whenever a process performs an event
of interest 1t Increments its own counter
value in its array,

e whenever a process sends a message the
array of counters is piggybacked on the
message, and

e whenever a process receives a message it
sets each element in its own array to be
the maximum of the current value of the
element and the corresponding element in
the piggybacked array received.

www.manaraa.com

® d([12)
b([2,0]) @
® c([1,1])
a([1,0])
P Q

Figure 10: Partially ordered logical clock time-
stamps.

Figure 10 shows how our example would be
timestamped. Processes P and () both main-
tain an array of two counters. In each array
the first counter value represents the number
of events known to have occurred in process
P and the second value represents the number
of events known to have occurred in process
). (This example assumes a fixed number of
processes, but the concept extends to dynamic
process creation [3].)

The entire array forms the timestamp.
When comparing two such timestamps we can
conclude that some event e preceded some
event f if and only if

e event f has a counter value for the process
in which e occurred greater than or equal
to the number of events in that process
up to e inclusive, and

e event e has a counter value for the pro-
cess in which f occurred strictly less than
the number of events in that process up
to f inclusive (this condition avoids re-
flexivity [1] and allows for synchronous
message-passing [3]).

For instance, in Figure 10 we can conclude
that event a preceded event d because d knows
of the occurrence of 1 event in process P, as
does a, but a does not know of as many events
in process @ as d. Similarly we know that ¢
preceded d because d knows of more events in
process @ (2) than ¢ does (1).

These conclusions can also be reached us-
ing totally ordered clocks. However, where

the totally ordered model assumed that & pre-
ceded d, the partially ordered model does not.
We cannot show that b precedes d because b
knows of more events (2) in process P than d
does (1). Furthermore, we cannot show that
d precedes b either because d knows of more
events occurring in process @ (2) than does
b (0). An observer can therefore make use of
these timestamps to determine that events b
and d are unordered; they are independent ac-
tions that (in global time) may occur in either
order, or even simultaneously.

This capability overcomes the last of our
outstanding observability effects (see Table 1).
Partially ordered clocks reflect only “enforced”
causal orderings and make the absence of or-
dering explicit.

5 Discussion

5.1 Synchronous notifications

Many of the observability effects defined in
Section 3 stemmed from unpredictable delays
between the time events occurred in the dis-
tributed system and the time the observer re-
ceived a notification. It is therefore tempting
to assume that using synchronous communi-
cation between the system and its observer(s)
will avoid these effects. Unfortunately, as
shown in Figure 11, the problems persist. (In-
formation is still being sent from processes P
and @ to O, but the double-headed arrows de-
note the bidirectional causality relation that
results from synchronous communication; a
synchronous message-pass can be modelled as
an asynchronous message sent to the observer
immediately followed by an acknowledgement
message sent back to the notifier.)

It 1is still possible for the arrival time of noti-
fications to incorrectly reflect event orderings.
In Figure 11 process P is delayed, perhaps
due to contention for the cpu, and the no-
tification for event ¢ arrives before that of its
causal predecessor a. Arbitrary orderings are
still imposed, as 1s the case between b and d.
Similarly, multiple observers may see different
orderings and the same computation may yield
different observations.

Making the notifications an integral part of

www.manaraa.com

A

S |

S = ®d

|

[be

.]

A o

|

: a

|

) P Q
Figure 11: Inaccurate reporting using syn-

chronous notifications.

the events themselves, i.e., making the event
and the notification atomic, improves the situ-
ation but this is difficult to achieve in practice.
In a geographically-separated network, syn-
chronous message-passing is inevitably imple-
mented via an underlying asynchronous mes-
sage protocol.

5.2 Intrusive observers

It was noted above that synchronous notifica-
tion messages cannot solve our observability
problems. Even worse, synchronous notifica-
tion introduces a form of probe effect (see Ap-
pendix A) in which the mere act of observing
the system alters its behaviour! (Again one
can draw a parallel with quantum physics.)
This manifests itself in two ways. Firstly,
processes which wish to notify the observer are
effectively blocked until the observer deigns to
communicate with them. This may alter real-
time behaviour and nondeterministic choices
in the system under observation. Also, any
bias on the observer’s part about which system
processes it “prefers” to communicate with
will influence their ability to proceed.
Secondly, the bi-directional causality rela-
tionship defined by synchronous communica-
tion creates new causal orderings that would
not exist in the absence of the observer. In
Figure 12 each event is followed by a notifi-
cation message. After receiving notification of
event b in process P, the observer interacts
with process @, to receive notification of event
c¢. This creates a direct causal link between P

0 P Q

Figure 12: Intrusiveness due to synchronous
notifications.

and @, via the observer O, that means that
event b causally affects event d! This is easily
demonstrable by following arrows from b to d
in Figure 12.

(A similar problem happens whenever an
observer participates in the logical time-
stamping algorithms described in Sections 4.3
and 4.4. It is important that an observer must
not propagate the timestamps it receives if it is
to remain unintrusive. Lamport also discusses
the opposite problem, in which the failure of
some links in a distributed system to propa-
gate timestamps leads to “anomalous” obser-
vations [1].)

6 Conclusion

We have compared a number of mechanisms
intended to give the programmer a view of
the order in which events occur in a dis-
tributed system. It was shown that par-
tially ordered clocks are the only one capa-
ble of fully indicating ordering between events;
all other timestamping mechanisms may mis-
leadingly impose orderings between indepen-
dent events. This is not to say that partially
ordered clocks are the only mechanism that
should be used; they are expensive to imple-
ment and totally ordered logical clocks have
demonstrated their adequacy in many practi-
cal applications. However programmers using
other timestamping mechanisms should appre-
ciate their limitations and understand that
they are receiving an incomplete view of event

www.manaraa.com

ordering. Partially ordered clocks can then
be used to give the complete picture when
needed.

This work began with the author’s own at-
tempt to debug a parallel program. The pro-
gram drew a complex diagram on a graphics
terminal. This was done using several pro-
cesses, each in charge of their own portion of
the screen, presided over by a central “con-
troller” process which initialised and closed
the display surface. The program was found
to occasionally crash towards the end of the
run, seemingly at random. Poor synchroni-
sation between the controller and its subor-
dinates in the final stages of the execution
was suspected but none of the debugging tools
available at the time (1985) was capable of giv-
ing us a view of system behaviour adequate to
confirm this suspicion; ultimately it transpired
that the problem was caused by the controller
process performing its closing actions after re-
ceiving a “finished” message from just one of
its subordinates, instead of waiting for them
all. The frustrations encountered in this exer-
cise led to the development of partially ordered
logical clocks [3] as a model that can detect the
absence of ordering.

Acknowledgements 1 wish to thank Mark
Utting and the anonymous referees for their in-
sightful comments and corrections, and Robin
Stanton and Amr El-Kadi for influential dis-
cussions on the nature of the probe effect.

References

[1] L. Lamport. Time, clocks, and the or-
dering of events in a distributed system.
Commaunications of the ACM, 21(7):558-
565, July 1978.

E.F. Taylor and J.A. Wheeler. Spacetime
Physics: An Introduction to Special Rel-
ativity. Freeman, 1992. Second edition.

C.J. Fidge. Logical time in distributed
computing systems. [FEE Computer,
24(8):28-33, August 1991.

F. Mattern. Virtual time and global
states of distributed systems. In Parallel

and Distributed Algorithms, pages 215—
226. North-Holland, 1989.

J. Gait. A probe effect in concurrent pro-
grams. Software—Practice & Experience,

16(3):225-233, 1986.

P.S. Dodd and C.V. Ravishankar. Mon-
itoring and debugging distributed real-
time programs. Software—Practice & Eu-

perience, 22(10):863-877, October 1992.

F. Baiardi, N. de Francesco, and
G. Vaglini. Development of a debug-
ger for a concurrent language. [FFEE

Transactions on Software Engineering,

SE-12(4):547-553, 1986.

L.D. Wittie. Debugging distributed C
programs by real time replay. ACM SIG-
PLAN Notices, 24(1), January 1989.

H. Tokuda, M. Kotera, and C. Mercer. A
real-time monitor for a distributed real-
time operating system. ACM SIGPLAN
Notices, 24(1), January 1989.

C.E. McDowell and D.P. Helmbold. De-
bugging concurrent programs. ACM
Computing Surveys, 21(4):593-622, De-
cember 1989.

R. Rubin, L. Rudoplh, and D. Zernik.
Debugging parallel programs in parallel.
ACM SIGPLAN Notices, 24(1), January
1989.

D. Haban. DTM: A method for test-
ing distributed systems. In Proc. Sizth
Symposium on Reliability in Distributed
Software and Database Systems, Virginia,
March 1987.

A. Gordon. Ordering Errors in Dis-
tributed Programs. PhD thesis, University
of Wisconsin-Madison, 1985.

J. Joyce, G. Lomow, K. Slind, and
B. Unger. Monitoring distributed sys-
tems. ACM Transactions on Computer

Systems, 5(2):121-150, 1987.

www.manaraa.com

A The probe effect and re-
producibility

An issue often associated with, but distinct
from, the observability problem is the probe ef-
fect (sometimes referred to as the ‘Heisenberg
effect” by aspiring physicists). This is the dan-
ger that auxiliary code added by a debugger
will alter the behaviour of a concurrent pro-
gram under study [5, 6]. Whereas the observ-
ability problem concerned our ability to study
a particular computation, the probe effect con-
cerns the ability to perform a given computa-
tion in the first place. The probe effect may
make existing errors vanish, by preventing cer-
tain erroneous computations from occurring,
or can cause new errors to appear, by allowing
computations not possible in the original pro-
gram. Many systems take extreme measures in
an attempt to avoid the probe effect, typically
by trying to account for the time occupied by
the auxiliary code [7, 8]. Unfortunately it has
long been recognised that software-based de-
bugging utilities inevitably introduce some de-
gree of intrusiveness [9]. (Customised hard-
ware can be used to unintrusively monitor a
system [10, 11] but this is expensive and in-
flexible.)
The probe effect manifests itself by

e changing the probability of making par-
ticular nondeterministic choices,

e altering real-time execution speeds,

e changing access patterns to inadequately
protected shared memory, or

e making a program augmented with de-
bugging probes distinguishable from the
unaugmented program.

We can therefore correspondingly recognise
that the probe effect may be lessened under
certain conditions. In contemporary program-
ming languages (e.g., Ada and occam) it is
generally safe to assume that the language se-
mantics makes no commitment regarding fair-
ness of choices so no amount of bias introduced
by debugging code can be said to have altered
the program semantics.

10

Given this assumption, there are two partic-
ular scenarios of interest. Firstly, it has been
widely recognised that if the program undergo-
ing debugging is the same as the final ‘produc-
tion’ version then the probe effect is not a con-
This implies the commonly-suggested
solution of permanently installing debugging
probes so that there is only ever one version
of the program in existence [10, 6, 12, 13], al-
beit with a penalty in terms of run-time over-
heads. (However, this approach has the ben-
efit of leaving debugging ‘hooks’ in an oper-
ational system for tracking down infrequent
errors that eluded the testing and debugging
phases.)

Secondly, if the program has no real-time
deadlines and does not attempt unprotected
access to shared memory, then we can be cer-
tain that no new logical errors will be induced
in the augmented program—only valid control
paths can be followed. However there is still
the possibility that existing errors are hidden,
due to the probability of an erroneous compu-
tation occurring being reduced to near zero.

It 1s also important to clearly distinguish
the probe effect from the difficulty of achiev-
ing reproducibility while debugging concurrent
software. This is the problem that, having
seen the system perform some behaviour of in-
terest, the programmer cannot force this par-
ticular computation to occur again. However
the reproducibility problem exists for any pro-
gram that makes nondeterministic choices, re-
gardless of the presence or absence of debug-
ging probes, and can be treated using methods
quite distinct from those proposed to overcome
the probe effect [10]. These include recording
traces for later replay [6] or giving the pro-
grammer explicit control over nondeterminis-
tic alternatives [14]. (Interestingly, the effect
described in Section 3.3 can be overcome by
including the observer itself in a trace-based
reproducibility mechanism.) Practical debug-
ging problems attributed to the probe effect
are, quite often, actually manifestations of the
difficulty of achieving reproducibility.

cern.

www.manaraa.com

